lunes, 25 de octubre de 2010

TEOREMA DE PITAGORAS

El Teorema de Pitágoras establece que en un triángulo rectángulo el cuadrado de la longitud de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de las longitudes de los dos catetos (los dos lados menores del triángulo rectángulo: los que conforman el ángulo recto). Si un triángulo rectángulo tiene catetos de longitudes y , y la medida de la hipotenusa es , se establece que:
Demostración
Sea el triángulo rectángulo de catetos a y b e hipotenusa c. Se trata de demostrar que el área del cuadrado de lado c es igual a la suma de las áreas de los cuadrados de lado a y lado b. Es decir:
 a^2 + b^2 = c^2\,
Si añadimos tres triángulos iguales al original dentro del cuadrado de lado c formando la figura mostrada en la imagen, obtenemos un cuadrado de menor tamaño. Se puede observar que el cuadrado resultante tiene efectivamente un lado de b - a. Luego, el área de este cuadrado menor puede expresarse de la siguiente manera:
(a-b)^2 = a^2 - 2ab + b^2 \,
Ya que (b-a)^2 = (a-b)^2 \, .
Es evidente que el área del cuadrado de lado c es la suma del área de los cuatro triángulos de altura a y base b que están dentro de él más el área del cuadrado menor:
c^2 = 4 \cdot \left( \frac{a \cdot b}{2} \right) + a^2 - 2ab + b^2= a^2 + b^2
Con lo cual queda demostrado el teorema.

Demostraciones supuestas de Pitágoras

Se cree que Pitágoras se basó en la semejanza de los triángulos ABC, AHC y BHC. La figura coloreada hace evidente el cumplimiento del teorema.
Se estima que se demostró el teorema mediante semejanza de triángulos: sus lados homólogos son proporcionales.[1]
Sea el triángulo ABC, rectángulo en C. El segmento CH es la altura relativa a la hipotenusa, en la que determina los segmentos a’ y b’, proyecciones en ella de los catetos a y b, respectivamente.
Los triángulos rectángulos ABC, AHC y BHC tienen sus tres bases iguales: todos tienen dos bases en común, y los ángulos agudos son iguales bien por ser comunes, bien por tener sus lados perpendiculares. En consecuencia dichos triángulos son semejantes.
  • De la semejanza entre ABC y AHC:
y dos triangulos son semejantes si hay dos o más ángulos congruentes.

\frac {b}{b'}=\frac {c}{b}
b^2\ =\ b'c

  • De la semejanza entre ABC y BHC:

\frac {a}{a'}=\frac {c}{a}

a^2\ =\ a'c

Los resultados obtenidos son el teorema del cateto. Sumando:
a^2\ +\ b^2 =a'c\ +\ b'c\ =\ c\left (a'+b'\right )
Pero \left (a'+b'\right )=\ c, por lo que finalmente resulta:
a^2\ +\ b^2 =c^2
La relación entre las superficies de dos figuras semejantes es igual al cuadrado de su razón de semejanza. En esto pudo haberse basado Pitágoras para demostrar su teorema
Pitágoras también pudo haber demostrado el teorema basándose en la relación entre las superficies de figuras semejantes.
Los triángulos PQR y PST son semejantes, de manera que:
\frac {r}{u}=\frac {s}{v} = r
siendo r la razón de semejanza entre dichos triángulos. Si ahora buscamos la relación entre sus superficies:
S_{PQR}\ =\ \frac {1}{2} \left ( rs \right )
S_{PST}\ =\ \frac {1}{2} \left ( uv \right )
obtenemos después de simplificar que:
\frac {S_{PQR}}{S_{PST}}=\frac {rs}{uv} = \frac {r}{u} \cdot \frac {s}{v}
pero siendo \frac {r}{u}=\frac {s}{v} = r la razón de semejanza, está claro que:
\frac {S_{PQR}}{S_{PST}}= \left (\frac {r}{u} \right )^2 = \left ( \frac {s}{v} \right ) ^2
Es decir, "la relación entre las superficies de dos figuras semejantes es igual al cuadrado de la razón de semejanza".
Aplicando ese principio a los triángulos rectángulos semejantes ACH y BCH tenemos que:
\frac {S_{ACH}}{S_{BCH}}= \left (\frac {b}{a} \right )^2
que de acuerdo con las propiedades de las proporciones nos da:
\frac {S_{ACH}} {b^2} = \frac {S_{BCH}} {a^2} = \frac {S_{ACH} + S_{BCH}}{b^2+a^2 } (I)
y por la semejanza entre los triángulos ACH y ABC resulta que:
\frac {S_{ACH}}{S_{ABC}}= \left (\frac {b}{c} \right )^2
\frac {S_{ACH}}{b^2} = \frac {S_{ABC}} {c^2}
pero según (I) \frac {S_{ACH}} {b^2} = \frac {S_{ACH} + S_{BCH}}{b^2+a^2 }, así que:
 \frac {S_{ACH} + S_{BCH}}{b^2+a^2 } = \frac {S_{ABC}} {c^2}
y por lo tanto:
 b^2 \ +\ a^2 \ = \ c^2
quedando demostrado el teorema de Pitágoras.
Los cuadrados compuestos en el centro y a la derecha tienen áreas equivalentes. Quitándoles los triángulos el teorema de Pitágoras queda demostrado.
Es asimismo posible que Pitágoras hubiera obtenido una demostración gráfica del teorema.
Partiendo de la configuración inicial, con el triángulo rectángulo de lados a, b, c, y los cuadrados correspondientes a catetos e hipotenusa –izquierda-, se construyen dos cuadrados diferentes:
  • Uno de ellos –centro- está formado por los cuadrados de los catetos, más cuatro triángulos rectángulos iguales al triángulo inicial.
  • El otro cuadrado –derecha- lo conforman los mismos cuatro triángulos, y el cuadrado de la hipotenusa.
Si a cada uno de estos cuadrados les quitamos los triángulos, evidentemente el área del cuadrado gris (c2) equivale a la de los cuadrados amarillo y azul (b2 + a2), habiéndose demostrado el teorema de Pitágoras.

GENERADOR DE VAN DE GRAAFF

El generador de Van de Graaff es una máquina electrostática que utiliza una cinta móvil para acumular grandes cantidades de carga eléctrica en el interior de una esfera metálica hueca. Las diferencias de potencial así alcanzadas en un generador de Van de Graaff moderno pueden llegar a alcanzar los 5 megavoltios. Las diferentes aplicaciones de esta máquina incluyen la producción de rayos X, esterilización de alimentos y experimentos de física de partículas y física nuclear.

Historia
Este tipo de generador eléctrico fue desarrollado inicialmente por el físico Robert J. Van de Graaff en el MIT alrededor de 1929 para realizar experimentos en física nuclear en los que se aceleraban partículas cargadas que se hacían chocar contra blancos fijos a gran velocidad. Los resultados de las colisiones nos informan de las características de los núcleos del material que constituye el blanco. El primer modelo funcional fue exhibido en octubre de 1929 y para 1931 Van de Graaff había producido un generador capaz de alcanzar diferencias de potencial de 1 megavoltio.

El generador consiste en una cinta, transportadora de material aislante motorizada, que transporta carga a un terminal hueco. La carga es depositada en la cinta por induccion en la cinta, ya que la varilla metalica o peine, esta muy proxima a la cinta pero no en contacto. La carga, transportada por la cinta, pasa al terminal esférico nulo pormedio de otro peine o varilla metálica que se encarga de producir energía.

El generador de Van de Graaff es una máquina que almacena carga eléctrica en una gran esfera conductora hueca gracias a la fricción que produce una correa sobre unos peines metálicos. Las cargas son transportadas por el peine conectado a la esfera hasta ésta donde se comienzan a acumular. El funcionamiento con más detalles lo tenéis en el enlace anterior a la Wikipedia así que no me dedicaré a explicároslo aquí. Lo que sí os diré es que la diferencia de potencial que puede llegar a conseguirse es del orden de los megavoltios (millones de voltios). Si no os hacéis una idea de esta cantidad, deciros que los enchufes que tenemos en nuestras casas son de tan solo 220 voltios. Así que si ya ocurren accidentes de electrocución con este voltaje, imaginaros lo que podría pasar con un voltaje miles de veces superior... Sin embargo esto afortunadamente no ocurre.

El motivo de esto es que el campo que tenemos en el generador es
electrostático. Esto que quiere decir?? Pues bien, el hecho de estar en electrostática implica que no hay una intensidad que recorra la esfera metálica. Sí que aparece una intensidad cuando tocamos la esfera y nos convertirnos en un hilo conductor (recordad que el cuerpo humano es en su mayor parte agua, de modo que somos relativamente buenos conductores), pero no sentimos nada extraño salvo que la carga se va a repartir entre el generador y la superficie de nuestro cuerpo (las cargas no se adentran en nuestro cuerpo por tratarse de electricidad estática), y nos "abandonará" por aquellos lugares con terminación más puntiaguda debido al conocido efecto punta, como pueden ser los dedos o lo que es más habitual, los pelos de la cabeza.

 

FUNCIONES TRIGONOMETRICAS

Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulo rectángulo asociado a sus ángulos. Las funciones trigonométricas son funciones cuyos valores son extensiones del concepto de razón trigonométrica en un triángulo rectángulo trazado en una circunferencia unitaria (de radio unidad). Definiciones más modernas las describen como series infinitas o como la solución de ciertas ecuaciones diferenciales, permitiendo su extensión a valores positivos y negativos, e incluso a números complejos.
Existen seis funciones trigonométricas básicas. Las últimas cuatro, se definen en relación de las dos primeras funciones, aunque se pueden definir geométricamente o por medio de sus relaciones. Algunas funciones fueron comunes antiguamente, y aparecen en las primeras tablas, pero no se utilizan actualmente; por ejemplo el verseno (1 − cos θ) y la exsecante (sec θ − 1).
FUNCIONES:


FunciónAbreviaturaEquivalencias (en radianes)
Senosen (sin) sen \; \theta \equiv \frac{1}{\csc \theta} \equiv \cos \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\cot \theta} \,
Cosenocos\cos \theta \equiv \frac{1}{\sec \theta} \equiv \sin \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sin \theta}{\tan \theta} \,
Tangentetan\tan \theta \equiv \frac{1}{\cot \theta} \equiv \cot \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sin \theta}{\cos \theta} \,
Cotangentecot\cot \theta \equiv \frac{1}{\tan \theta} \equiv \tan \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\sin \theta} \,
Secantesec\sec \theta \equiv \frac{1}{\cos \theta} \equiv \csc \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\tan \theta}{\sin \theta} \,
Cosecantecsc (cosec)\csc \theta \equiv \frac{1}{\sin \theta} \equiv \sec \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cot \theta}{\cos \theta} \,


FunciónAbreviaturaEquivalencias (en radianes)
Senosen (sin) sen \; \theta \equiv \frac{1}{\csc \theta} \equiv \cos \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\cot \theta} \,
Cosenocos\cos \theta \equiv \frac{1}{\sec \theta} \equiv \sin \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sin \theta}{\tan \theta} \,
Tangentetan\tan \theta \equiv \frac{1}{\cot \theta} \equiv \cot \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sin \theta}{\cos \theta} \,
Cotangentecot\cot \theta \equiv \frac{1}{\tan \theta} \equiv \tan \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\sin \theta} \,
Secantesec\sec \theta \equiv \frac{1}{\cos \theta} \equiv \csc \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\tan \theta}{\sin \theta} \,
Cosecantecsc (cosec)\csc \theta \equiv \frac{1}{\sin \theta} \equiv \sec \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cot \theta}{\cos \theta} \,
FunciónAbreviaturaEquivalencias (en radianes)
Senosen (sin) sen \; \theta \equiv \frac{1}{\csc \theta} \equiv \cos \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\cot \theta} \,
Cosenocos\cos \theta \equiv \frac{1}{\sec \theta} \equiv \sin \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sin \theta}{\tan \theta} \,
Tangentetan\tan \theta \equiv \frac{1}{\cot \theta} \equiv \cot \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sin \theta}{\cos \theta} \,
Cotangentecot\cot \theta \equiv \frac{1}{\tan \theta} \equiv \tan \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\sin \theta} \,
Secantesec\sec \theta \equiv \frac{1}{\cos \theta} \equiv \csc \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\tan \theta}{\sin \theta} \,
Cosecantecsc (cosec)\csc \theta \equiv \frac{1}{\sin \theta} \equiv \sec \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cot \theta}{\cos \theta} \,
FunciónAbreviaturaEquivalencias (en radianes)
Senosen (sin) sen \; \theta \equiv \frac{1}{\csc \theta} \equiv \cos \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\cot \theta} \,
Cosenocos\cos \theta \equiv \frac{1}{\sec \theta} \equiv \sin \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sin \theta}{\tan \theta} \,
Tangentetan\tan \theta \equiv \frac{1}{\cot \theta} \equiv \cot \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sin \theta}{\cos \theta} \,
Cotangentecot\cot \theta \equiv \frac{1}{\tan \theta} \equiv \tan \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\sin \theta} \,
Secantesec\sec \theta \equiv \frac{1}{\cos \theta} \equiv \csc \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\tan \theta}{\sin \theta} \,
Cosecantecsc (cosec)\csc \theta \equiv \frac{1}{\sin \theta} \equiv \sec \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cot \theta}{\cos \theta} \,

1) El seno de un ángulo es la relación entre la longitud del cateto opuesto y la longitud de la hipotenusa:
\sin \alpha = \frac {{ \color{ForestGreen}\textrm{opuesto}}} {{ \color{Red}\textrm{hipotenusa}}} = \frac {a} {h}.
El valor de esta relación no depende del tamaño del triángulo rectángulo que elijamos, siempre que tenga el mismo ángulo α , en cuyo caso se trata de triángulos semejantes.
2) El coseno de un ángulo es la relación entre la longitud del cateto adyacente y la longitud de la hipotenusa:
\cos \alpha = \frac {{ \color{Blue}\textrm{adyacente}}} {{ \color{Red}\textrm{hipotenusa}}} = \frac {b} {h}.
3) La tangente de un ángulo es la relación entre la longitud del cateto opuesto y la del adyacente:
\tan \alpha = \frac {{ \color{ForestGreen}\textrm{opuesto}}} {{ \color{Blue}\textrm{adyacente}}} = \frac {a} {b}.
4) La cotangente de un ángulo es la relación entre la longitud del cateto adyacente y la del opuesto:
\cot \alpha = \frac {{ \color{Blue}\textrm{adyacente}}} {{ \color{ForestGreen}\textrm{opuesto}}} = \frac {b} {a}.
5) La secante de un ángulo es la relación entre la longitud de la hipotenusa y la longitud del cateto adyacente:
\sec \alpha = \frac {{ \color{Red}\textrm{hipotenusa}}} {{ \color{Blue}\textrm{adyacente}}} = \frac {h} {b}.
6) La cosecante de un ángulo es la relación entre la longitud de la hipotenusa y la longitud del cateto opuesto:
\csc \alpha = \frac {{ \color{Red}\textrm{hipotenusa}}} {{ \color{ForestGreen}\textrm{opuesto}}} = \frac {h} {a}.